# The Calderon-Zygmund Decomposition on Product Domains <br> Sun-Yung A. Chang and Robert Fefferman 

Gagik Amirkhanyan

Georgia Institute of Technology
June 11, 2012

## Outline

- Definition of the Hardy Spaces
- Atomic Decomposition on $H^{1}$
- Calderon-Zygmund Decomposition
- Atomic Decomposition on $H^{p}$


## Definition of the Hardy Spaces

The Hardy spaces $H^{p}\left(\mathbf{R}^{n}\right)$ have several equivalent definitions.

- The oldest is for $n=1$ the space $H^{p}(\mathbf{R})$ can be defined as the boundary values on the real axis of the real parts of those analytic functions $f$ in the upper half-plane which satisfy

$$
\|f\|_{H^{p}}=\sup _{y>0}\left[\int|f(x+\mathrm{i} y)|^{p} d x\right]^{1 / p}<\infty
$$

- The definition by means of maximal functions works in all dimensions.


## Definition of $H^{p}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$

- $\mathbf{R}_{+}^{2}$ - the upper half plane.
- $\mathbf{R}^{2}$ is the boundary of $\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}$
- A point in $\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}$ will be denoted $(t, y)$ where $t=\left(t_{1}, t_{2}\right) \in \mathbf{R}^{2}$ and $y=\left(y_{1}, y_{2}\right), y_{i} \geq 0$


## Definition of $H^{P}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$

- $\psi(t) \in C^{1}(\mathbf{R})$ is an even function supported on $[-1,1]$ and $\int_{-1}^{1} \psi(t) d t=0$
- $\psi_{y}(t)=(1 / y) \psi(t / y)$ for $y>0$
- $\psi_{y}(t)=\psi_{y_{1}}\left(t_{1}\right) \psi_{y_{2}}\left(t_{2}\right)$ for $t=\left(t_{1}, t_{2}\right) \in \mathbf{R}^{2}$ and $y=\left(y_{1}, y_{2}\right), y_{i} \geq 0$
- For $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ define $f(t, y)=f * \psi_{y}(t)$


## Definition of $H^{p}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$

- If $x=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}, \Gamma(x)$ will denote the product cone $\Gamma(x)=\Gamma\left(x_{1}\right) \times \Gamma\left(x_{2}\right)$ where

$$
\Gamma\left(x_{i}\right)=\left\{\left(t_{i}, y_{i}\right) \in \mathbf{R}_{+}^{2}:\left|x_{i}-t_{i}\right|<y_{i}\right\}, i=1,2
$$

- Given a function $f$ on $\mathbf{R}^{2}$ we define its double S-function by

$$
S^{2}(f)(x)=\iint_{\Gamma(x)}|f(t, y)|^{2} \frac{d t d y}{y_{1}^{2} y_{2}^{2}}
$$

- For $1<p<\infty$ It's know that

$$
\|S(f)\|_{p} \leq c_{p}\|f\|_{p}
$$

## Definition of $H^{p}\left(\mathbf{R}_{+}^{2}\right.$ <br> $\left.\times \mathbf{R}_{+}^{2}\right)$

- We define functions in $H^{p}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right), 0<p<\infty$ as those functions $f$ with $S(f) \in L^{p}\left(\mathbf{R}^{2}\right)$
- $\|f\|_{H^{p}}=\|S(f)\|_{p}$
- This definition of $H^{p}$ spaces is equivalent to the one defined via boundary values of functions of bi-holomorphic functions on $\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}$


## Atomic Decomposition on $H^{1}(\mathbf{R})$

- Definition (on R) An atom is a function $a(x)$ supported on an interval / such that

$$
\int_{I} a(x) d x=0 \quad \text { and } \quad\|a(x)\|_{\infty} \leq \frac{1}{|I|}
$$

- Theorem (R. Coifman) $f \in H^{1}(\mathbf{R})$ if and only if $f$ can be written as $f=\sum \lambda_{k} a_{k}$ where $a_{k}$ are atoms and $\lambda_{k} \geq 0$ satisfy $\sum\left|\lambda_{k}\right| \leq A\|f\|_{H^{1}}$.


## Atomic Decomposition on $H^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$

Definition (on $\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}$ ) An atom is a function a( $x_{1}, x_{2}$ ) defined on $\mathbf{R}^{2}$ whose support is contained in some open set $\Omega$ of finite measure such that
(1) $\|a\|_{2} \leq \frac{1}{|\Omega|^{1 / 2}}$
(2) a can be further decomposed into elementary particles $a_{R}$ as follows:
(i) $a_{R}=\sum_{R} a_{R}$ where $a_{R}$ is supported in the triple of distinct dyadic rectangles $R \subset \Omega$ (say $R=I \times J$ )
(ii) $\int_{I} a\left(x_{1}, \overline{x_{2}}\right) d x_{1}=\int_{J} a\left(\overline{x_{1}}, x_{2}\right) d x_{2}=0$ for each $\overline{x_{1}} \in I, \overline{x_{2}} \in J$
(iii) $a_{R}$ is $C^{1}$ with $\left\|a_{R}\right\|_{\infty} \leq d_{R}$,

$$
\left\|\frac{\partial a_{R}}{\partial x_{1}}\right\|_{\infty} \leq \frac{d_{R}}{|I|}, \quad\left\|\frac{\partial a_{R}}{\partial x_{2}}\right\|_{\infty} \leq \frac{d_{R}}{|J|}
$$

with $\sum d_{R}^{2}|R| \leq A /|\Omega|$

## Atomic Decomposition on $H^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$

- Theorem 1. (Chang and Fefferman) $f \in H^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$ if and only if $f$ can be written as $f=\sum \lambda_{k} a_{k}$ where $a_{k}$ are atoms and $\lambda_{k} \geq 0$ satisfy $\sum \lambda_{k} \leq A\|f\|_{H^{1}}$.


## Atomic Decomposition on $H^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$

- Outline of the proof. It's enough to show that if $a$ is an atom then $a \in H_{1}$. Suppose $a$ is an atom supported in the open set $\Omega$, $a=\sum_{R \subset \Omega} a_{R}$.
For each rectangle $S=I \times J$ let

$$
S_{+}=\left\{(t, y) \in \mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2} ; t \in S, \frac{|I|}{2}<y_{1} \leq|I|, \frac{|J|}{2}<y_{2} \leq|J|\right\}
$$

For each point $x \in \mathbf{R}^{2}$, let $S_{x}$ denote the collection of dyadic rectangles containing the point $x$. Then

$$
\begin{aligned}
S^{2}(a)(x) & =\iint_{\Gamma(x)}|a(t, y)|^{2} \frac{d t d y}{y_{1}^{2} y_{2}^{2}} \\
& \lesssim \sum_{S \in S_{x}} \iint_{S_{+}}|a(t, y)|^{2} \frac{d t d y}{y_{1}^{2} y_{2}^{2}}
\end{aligned}
$$

## Atomic Decomposition on $H^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$

- $a(x) \in H^{1}$ iff $S(a) \in L^{1}$

$$
\begin{gathered}
\|S(a)\|=\int S(a)(x) d x \\
=\int_{\left\{M\left(1_{\Omega}\right)(x)<1 / 4\right\}} S(a)(x) d x+\int_{\left\{M\left(1_{\Omega}\right)(x) \geq 1 / 4\right\}} S(a)(x) d x .
\end{gathered}
$$

- We have $\left|\left\{M\left(1_{\Omega}\right)(x) \geq 1 / 4\right\}\right| \leq c|\Omega|$

$$
\begin{gathered}
\int_{\left\{M\left(1_{\Omega}\right)(x) \geq 1 / 4\right\}} S(a)(x) d x \leq \\
\left(\int S^{2}(a)(x) d x\right)^{1 / 2}\left|\left\{M\left(1_{\Omega}\right)(x) \geq 1 / 4\right\}\right|^{1 / 2} \\
\leq c\|a\|_{2}|\Omega|^{1 / 2} \leq c .
\end{gathered}
$$

## Atomic Decomposition on $H^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$

- $\int_{\left\{M\left(1_{\Omega}\right)(x)<1 / 4\right\}} S(a)(x) d x<c$
- Hence $S(a) \in L^{1}$ implying $a(x) \in H^{1}$.


## Calderon-Zygmund Decomposition

- Theorem (Calderon-Zygmund Decomposition). $f \in L^{1}\left(\mathbf{R}^{n}\right)$ and $\alpha>0$ then there exists a disjoint collection of dyadic cubes $\left\{Q_{i}: i=1,2, \ldots\right\}$ such that

$$
\alpha<\frac{1}{\left|Q_{i}\right|} \int_{Q_{i}}|f(x)| d x \leq 2^{n} \alpha, \quad i=1,2, \ldots
$$

and

$$
f(x) \leq \alpha \quad \text { for a.e. } x \in \mathbf{R}^{n} \backslash \cup_{i=1}^{\infty} Q_{i} .
$$

- Given $f$ as above, we can write $f$ as the sum of a "good" function $g$ and a "bad" function $b, f=g+b$, where $g \leq 2^{n} \alpha$ and $b$ is supported on $\cup_{i=1}^{\infty} Q_{i}$ with

$$
\int_{Q_{i}}|b(x)| d x \leq 2^{n} \alpha\left|Q_{i}\right| \quad \text { and } \quad \int_{Q_{i}} b(x) d x=0
$$

## Calderon-Zygmund Decomposition on Product Domains

- Calderon-Zygmund Lemma (Chang and Fefferman). Let $\alpha>0$ be given and $f \in L^{p}\left(\mathbf{R}^{2}\right), 1<p<\infty$. Then we may write $f=g+b$ where $g \in L^{2}\left(\mathbf{R}^{2}\right)$ and $b \in H^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$ with

$$
\|g\|_{2}^{2} \leq \alpha^{2-p}\|f\|_{p}^{p} \quad \text { and } \quad\|b\|_{H^{1}} \leq c \alpha^{1-p}\|f\|_{p}^{p}
$$

where $c$ is a universal constant.

- Remark It is shown that there exist constants $\lambda_{k}$ and atoms $b_{k}$ with $\sum\left|\lambda_{k}\right| \leq \alpha^{1-p}\|f\|_{p}^{p}$ and $f=g+\sum \lambda_{k} b_{k}$.
- Theorem 1 implies that $b=\sum \lambda_{k} b_{k}$ is in $H^{1}$.


## Calderon-Zygmund Decomposition on Product Domains

- Theorem 2 (Chang and Fefferman). Let $T$ be a linear operator which is bounded from $H^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$ to $L^{1}\left(\mathbf{R}^{2}\right)$ and bounded on $L^{2}\left(\mathbf{R}^{2}\right)$. Then $T$ is bounded on $L^{p}\left(\mathbf{R}^{2}\right)$ for all $1<p<2$.
- proof Let $f \in L^{p}\left(\mathbf{R}^{2}\right)$ and $\alpha>0$. According to the Calderon-Zygmund Lemma, we may write $f=g+b$ where

$$
\|g\|_{2}^{2} \leq \alpha^{2-p}\|f\|_{p}^{p} \quad \text { and } \quad\|b\|_{H^{1}} \leq c \alpha^{1-p}\|f\|_{p}^{p}
$$

- 

$$
\begin{aligned}
m\{|T f|>\alpha\} & \leq m\{|T g|>\alpha / 2\}+m\{|T b|>\alpha / 2\} \\
& \leq c\left(\frac{1}{\alpha^{2}}\|T g\|_{2}^{2}+\frac{1}{\alpha}\|T b\|_{1}\right) \\
& \leq c\left(\frac{1}{\alpha^{2}}\|g\|_{2}^{2}+\frac{1}{\alpha}\|b\|_{H^{1}}\right)
\end{aligned}
$$

## Calderon-Zygmund Decomposition on Product Domains

$$
\begin{aligned}
m\{|T f|>\alpha\} & \leq m\{|T g|>\alpha / 2\}+m\{|T b|>\alpha / 2\} \\
& \leq c\left(\frac{1}{\alpha^{2}}\|T g\|_{2}^{2}+\frac{1}{\alpha}\|T b\|_{1}\right) \\
& \leq c\left(\frac{1}{\alpha^{2}}\|g\|_{2}^{2}+\frac{1}{\alpha}\|b\|_{H^{1}}\right) \\
& \leq c \frac{1}{\alpha^{p}}\|f\|_{p}^{p}
\end{aligned}
$$

- T is weak-type $(p, p)$ for $1<p<2$.
- By the Marcinkiewicz Theorem $T$ is bounded on $L^{p}$ for $1<p<2$.


## Atomic Decomposition on $H^{p}(\mathbf{R}), 0<p<1$

- Definition (on R) An $p$-atom is a function $a(x)$ supported on an interval / such that

$$
\|a(x)\|_{\infty} \leq \frac{1}{|I|^{1 / p}} \quad \text { and } \quad \int_{I} a(x) x^{k} d x=0
$$

for all $0 \leq k \leq \frac{1}{p}-1$.

- Theorem (R. Coifman) $f \in H^{p}(\mathbf{R})$ if and only if $f$ can be written as $f=\sum \lambda_{k} a_{k}$ where $a_{k}$ are $p$-atoms and $\lambda_{k} \geq 0$ satisfy

$$
A\|f\|_{H^{p}}^{p} \leq \sum\left|\lambda_{k}\right|^{p} \leq B\|f\|_{H^{p}}^{p} .
$$

## Atomic Decomposition on $H^{P}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right), 0<p<1$

Definition (on $\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{\mathbf{2}}$ ) An $p$-atom is a function a( $x_{1}, x_{2}$ ) defined on $\mathbf{R}^{2}$ whose support is contained in some open set $\Omega$ of finite measure such that
(1) $\|a\|_{2}^{2} \leq|\Omega|^{1-2 / p}$
(2) a can be further decomposed into elementary particles $a_{R}$ as follows:
(i) $a_{R}=\sum_{R} a_{R}$ where $a_{R}$ is supported in the triple of distinct dyadic rectangles $R \subset \Omega($ say $R=I \times J)$
(ii) $\int_{I} a\left(x_{1}, \overline{x_{2}}\right) x_{1}^{k} d x_{1}=\int_{J} a\left(\overline{x_{1}}, x_{2}\right) x_{2}^{k} d x_{2}=0$ for each $\overline{x_{1}} \in I, \overline{x_{2}} \in J$ and $0 \leq k \leq k(p)$, where $k(p)=2 / p-3 / 2$
(iii) $a_{R}$ is $C^{m}$ with $\left\|a_{R}\right\|_{\infty} \leq d_{R}$,

$$
\begin{aligned}
& \left\|\frac{\partial^{m} a_{R}}{\partial x_{1}^{m}}\right\|_{\infty} \leq \frac{d_{R}}{|I|^{m}}, \quad\left\|\frac{\partial^{m} a_{R}}{\partial x_{2}^{m}}\right\|_{\infty} \leq \frac{d_{R}}{|J|^{m}}, 0<m \leq k(p)+1 \\
& \text { with } \sum d_{R}^{2}|R| \leq A|\Omega|^{1-2 / p}
\end{aligned}
$$

## Atomic Decomposition on $H^{p}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right), 0<p<1$

- Theorem 3. (Chang and Fefferman) $f \in H^{p}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$ then we may write $f=\sum \lambda_{k} a_{k}$ where $a_{k}$ are $p$-atoms and $\lambda_{k} \geq 0$ satisfy $\sum \lambda_{k}^{p} \leq c_{p}\|f\|_{H^{p}}^{p}$.

